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Figure 1. Gen3DEval: A holistic ranking metric to assess the quality of generated 3D objects on appearance, surface quality and text
fidelity using a vision large language model (vLLM) which is trained to choose the better out of two objects on the three evaluation
dimensions (appearance, text fidelity or surface quality).

Abstract

Rapid advancements in text-to-3D generation require ro-
bust and scalable evaluation metrics that align closely with
human judgment, a need unmet by current metrics such as
PSNR and CLIP, which require ground-truth data or fo-
cus only on prompt fidelity. To address this, we introduce
Gen3DEval, a novel evaluation framework that leverages
vision large language models (vLLMs) specifically fine-
tuned for 3D object quality assessment. Gen3DEval eval-
uates text fidelity, appearance, and surface quality by ana-
lyzing 3D surface normals, without requiring ground-truth
comparisons, bridging the gap between automated metrics
and user preferences. Compared to state-of-the-art task-
agnostic models, Gen3DEval demonstrates superior perfor-
mance in user-aligned evaluations, placing it as a compre-
hensive and accessible benchmark for future research on
text-to-3D generation. The project page can be found here:
https://shalini-maiti.github.io/gen3deval.github.io/.

1. Introduction

The domain of text-to-3D generation has advanced signifi-
cantly in recent years, driven by the rise of scalable archi-
tectures like diffusion models [43], neural radiance fields
(NeRF) [36], and Gaussian splatting [25]. However, the
field lacks standardized, human-aligned evaluation metrics
that can reliably assess these assets and the methods that
produce them. Existing metrics—such as CLIP [42] scores
evaluate only limited aspects of the output like text fidelity
and similarity-based measures like Peak-Signal-To-Noise
Ratio (PSNR), SSIM [55], Chamfer Distance, and Fréchet
Inception Distance (FID) [20] depend on ground-truth data
making them inadequate and impractical for text-to-3D gen-
eration, where diverse outputs may correspond to a single
prompt. In such cases, a unique, universally applicable ref-
erence does not exist, as multiple plausible 3D outputs can
vary widely in style, appearance, and fidelity to the text.
Meanwhile, FID computes a distributional similarity, which
poses other challenges. Currently, there is no standardized
large-scale validation set to serve as the ground-truth distri-
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bution for 3D assets, making FID computation difficult and
inconsistent. Moreover, generating sufficient 3D assets to
estimate this distribution requires significant computational
resources, casting FID as an expensive and time-intensive
metric. As a result, these metrics fall short of capturing the
nuanced requirements of evaluating text-to-3D generation,
where a scalable, human-aligned approach is essential.

While prior work such as GPT4VEval [57] has leveraged
GPT-4V [38] for assessing 3D asset quality, GPT-4V is a
general-purpose model not specifically trained for 3D qual-
ity assessment, which limits its effectiveness in this domain.
Furthermore, it can be costly to deploy at scale, and in our
experiments, we found that GPT-4o (which is the successor
to GPT-4V) performed significantly worse than our method
in aligning with human judgments of 3D asset quality.

To bridge this gap, we introduce Gen3DEval, a vision-
based large language model (vLLM) framework specifi-
cally fine-tuned to evaluate text-to-3D generation outputs
in alignment with human preferences. Unlike existing met-
rics [42, 55, 63], Gen3DEval assesses not only text fidelity
but also appearance and surface quality by analyzing ren-
dered multi-view images. Supporting up to eight images
as input, Gen3DEval enables comprehensive assessment by
leveraging multi-view renderings, such as RGB and normal
maps, of generated 3D objects. Using multi-view images as
input allows for compatibility across diverse 3D representa-
tions [25, 36, 60].

Built upon the recent vLLM early fusion approaches [4,
5, 27, 29], our method processes these input renderings by
first encoding each image through an image encoder, which
translates them into visual tokens. These tokens are then
integrated with text tokens and fed into a Llama3 model, al-
lowing Gen3DEval to interpret both visual and textual fea-
tures of the 3D objects holistically. To ensure robust per-
formance, we curate data from human assessments and fur-
ther enhance our training dataset with synthetically gener-
ated perturbations of artist-created 3D objects, incorporat-
ing artifacts like floaters, transparency errors, text fidelity
inconsistencies, excessively smooth surfaces etc.

A key component of our framework is Gen3DEval-
Bench, a benchmark dataset designed to standardize text-
to-3D evaluations across various quality dimensions. Com-
prising 80 diverse prompts, Gen3DEval-Bench facilitates
consistent, human-aligned assessments of visual fidelity
and aesthetic preferences. Our evaluation pipeline involves
two main stages: first, it performs pairwise comparisons
of 3D objects using multi-view renderings. Then it applies
ELO rating metrics [13] to generate scores that closely align
with human judgment. This process ensures robust and re-
liable evaluations across a broad range of 3D generative
methods. To sum up, our contributions are:
• A state-of-the-art holistic evaluation method for text-to-

3D generation that ranks methods across appearance, sur-

face quality and text fidelity.
• A vLLM fine-tuned on the Llama3 [2] model, using a

synthetic dataset curated to reflect human preferences for
evaluating generated 3D assets.

• A benchmark dataset, Gen3DEval-Bench, comprising 80
prompts for ranking existing and future text-to-3D gener-
ation methods in a standardized manner.

2. Related Work
Text-to-3D and Image-to-3D generation. In recent times,
the landscape of text-to-3D generation has seen rapid
growth with the advent of representations such as Neural
Radiance Fields [36], occupancy fields [37], SDF [60]
and Gaussian Splats [25], and the availability of large,
publicly available datasets such as Objaverse [10, 11].
Some of the earlier methods in the space currently include
[23, 28, 40, 41, 47, 48, 53, 56, 61, 64] that optimizes a
randomly-initialized 3D model via gradient descent con-
ditioned on sampled outputs of a text-to-image generation
model. Another direction of work include methods such
as [14, 21, 24, 31, 45, 46, 54] that use multi-view diffusion
models to fine-tune text-to-image models to quickly gen-
erate highly consistent multiple views or videos simultane-
ously from a single input image. Notably, another family of
methods [15, 22, 47] learns 3D priors from a large amount
of data and a scalable architecture to directly output robust
3D outputs from text or image inputs. With such an impres-
sive pace of growth in this research domain, it is imperative
for the presence of robust evaluation metrics and bench-
marks to ensure continued progress in this field, which is
a gap that Gen3DEval attempts to bridge.

3D Evaluation Metrics and benchmarks Classical 3D
metrics like PSNR, Chamfer Distance, LPIPS [63] and
SSIM [55] were developed to measure the quality of a gen-
erated 3D asset against a ground-truth asset. However, these
are similarity metrics and measure the distance between
generated and the ground-truth data. This is infeasible since
a single text prompt can be mapped to many generated 3D
outputs, with their quality or fidelity being independent of
their similarity to any single generated asset. We propose
that instead of measuring similarity, we need to inject 3D
quality priors into the method itself for the purpose of eval-
uation, which is the foundation of Gen3DEval.

Other metrics such as CLIP [42] scores have tried to
measure alignment with text by using a standard bench-
mark of textual prompts and computing a corresponding
score. However, they underwhelm with an increase in di-
versity of prompts. Another inadequacy is that only text-
alignment is measured and not appearance or surface qual-
ity. Gen3DEval addresses both of these aspects. The work
closest to ours in attempting to solve this problem is GPT-
4V(ision) is a Human-Aligned Evaluator for Text-to-3D
Generation [57]. However, it uses GPT4 [38] off the shelf,
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Figure 2. Gen3DEval framework: In stage 1, we train a vLLM to choose which object is better in terms of appearance, surface quality or
text fidelity. This is further divided into 2 parts. In pre-training, we train the vision-to-language projector using image summary VQA. In
the supervised fine-tuning (SFT) stage, we use comparison data to train for instruction following and preference evaluation. In stage 2, we
compute a ranking metric for the set of methods by applying the trained vLLM from stage 1 pairwise on Gen3DEval-Bench prompts.

which is a task-agnostic vLLM trained on half a trillion pa-
rameters whose API and checkpoints are not publicly avail-
able, making it costly to scale, whereas Gen3DEval has
been specifically trained to evaluate text-to-3D objects, on
8.35 billion parameters and will be made available for pub-
lic usage. Moreover, in our experiments, we found that
Gen3DEval performed significantly better than GPT4-o in
aligning with human judgments of 3D asset quality.

In the absence of quantifiable metrics, user studies have
been popularly employed as the gold standard to evaluate
3D generation methods. However, this is time-consuming,
cost-ineffective and lacks a standard procedure. Cer-
tain benchmarks such as T3Bench [17] and Dreamfusion
prompts [40] have been created to reduce the lack of stan-
dardization in this process. Gen3DEval takes a step fur-
ther in this direction by curating a benchmark Gen3DEval-
Bench with diverse prompts in terms of types objects, length
and compositionality.

Large Multi-modal Models The past couple of years
has seen great strides made in the development of Large
languages models (LLMs) like Llama [52], GPT-4 [38],
Claude [3], Gemini [49], and consequently, led to de-
velopment of vLLMs such as LLaVA [29], BLIP [27],
FUYU [5] and more [2, 3, 38]. They are powerful multi-
modal models that display strong image and language rea-
soning. However, since these are general purpose models,
they do not perform well on evaluating generated 3D ob-

jects. [57] showcases capabilities of GPT4 [38] to be able
to align with human preference for the assessment of 3D
objects. Gen3DEval takes this effort further by fine-tuning
a Llama3 [2] model using a curated synthetic dataset for
the specific purpose of introducing 3D aesthetic preference
into the vision-language space and transforming that into a
ready-to-use evaluation ranking metric.

3. Method
The proposed method, Gen3DEval is a vision-based large
language model (vLLM) that interprets and assesses the
quality of 3D generated objects. We train Gen3DEval us-
ing a carefully curated Visual-Question-Answering (VQA)
dataset, as detailed in Section 4.1. This training enables
Gen3DEval to learn associations between visual cues in
multi-view images and quality indicators such as text fi-
delity, surface detail, and appearance. We use up to eight
multi-view RGB images—renderings that include RGB
and normal maps—to capture comprehensive object details
from multiple angles; see Figure 2 for an overview.

3.1. Model Details
The Gen3DEval training process builds upon the LLaVA ar-
chitecture [29] and is organized into two sequential phases:
pre-training and supervised fine-tuning. In the initial phase,
each image is processed by an image encoder to produce vi-
sual embeddings Iemb. These embeddings are transformed



into language-compatible tokens Hi via a linear projection
matrix Wθ, enabling them to integrate seamlessly with the
language-based representations. At the same time, a lan-
guage tokenizer converts the natural language Question-
Answer (QA) pairs into text tokens Ht. The model Fϕ then
receives both the image and text tokens as input, learning to
predict the next token Hy by maximizing the likelihood of
the correct token.

For the image encoder, we initially consider CLIP [42],
which is commonly used across various vision-language
models [29, 40, 44]. However, since the input images are
rendered views of 3D objects, we also evaluate two ad-
ditional encoders: DinoV2 [39] and Fit3D [62]. DinoV2
generates visually consistent embeddings, while Fit3D is
specifically designed to encode 2D images into features
consistent with the underlying 3D scenes, making it par-
ticularly suited to our task. A comparison of these feature
encoders is provided in Table 1 and discussed in Section 4.2.

During the pre-training phase, the weights of both the
LLM and the image encoder are frozen, and only the
weights of the linear projection matrix Wθ are updated.
This selective tuning establishes alignment between the vi-
sual embeddings and language tokens, forming a foundation
for integrated visual-language comprehension.

In the fine-tuning phase, we unfreeze both the projection
matrix and the LLM, allowing them to be fine-tuned jointly,
while keeping the image encoder’s weights frozen. This
stage further specializes the model for 3D quality assess-
ment, enhancing its sensitivity to features such as surface
texture, text fidelity, and overall visual coherence across
various prompts and multi-view renderings.

3.2. Multi-view Input
To effectively evaluate the quality of generated 3D objects,
Gen3DEval leverages multi-view input, using up to 8 ren-
dered images uniformly panning each object. This approach
is essential for capturing the complete appearance and sur-
face consistency of 3D objects, as single-view images may
overlook aspects like hidden surfaces and occlusions that
become visible when observed from multiple viewpoints.

In pre-training, the input images range from a set of 1
to 4 RGB images or rendered surface normals panning the
object in a 360◦ round-table manner alongside a short sum-
mary in a QA pair. In fine-tuning, we input two sets of
images, for object 1 and object 2. Each set consists upto 4
multi-view images each, therefore training a VQA sample
consists upto 8 images and QA capturing the preference for
the preferred object. The number of tokens per image is 576
and approx. 250 for the text of the question.

4. Training Details
The following section provides an in-depth look at the
Gen3DEval dataset, outlining its composition, structure,

and the methodologies used to create a diverse and robust
training set. We describe the dataset’s sources and or-
ganization, the approach to rendering multi-view images,
and the use of human judgment and synthetic perturbations
to enhance model alignment with 3D quality standards.
Each component of the dataset is designed to support the
pre-training and fine-tuning stages, ensuring comprehensive
coverage of key attributes like appearance, surface consis-
tency, and text fidelity.

4.1. Dataset
Gen3DEval’s training dataset is designed to train and eval-
uate the model’s ability to assess 3D object quality across
various dimensions, including appearance, surface consis-
tency, and text fidelity. It comprises three subsets a) 3D
artist-created meshes, b) human preference data on genera-
tive method outputs and c) synthetic 3D comparison data.

3D Meshes: Comprising 140,000 high-quality 3D
meshes created by artists, this internal dataset spans diverse
semantic categories and provides a robust foundation for
generalizing to different types of 3D content. Each asset
comes with an accompanying text caption generated with
Llama3.2 [2]. We render each 3D asset from multiple view-
points, creating three types of visual inputs: RGB images,
alpha masks, and surface normals. These multi-view ren-
derings allow Gen3DEval to capture comprehensive visual
cues necessary for accurate 3D evaluation.

Human Annotations: To account for the nuances and
irregularities inherent in 3D generative methods, we con-
ducted a large-scale human preference study, collecting
over 5K comparative data points across 13 different 3D gen-
erative methods [6, 8, 15, 16, 18, 30, 32–34, 46, 47, 51, 54].
Annotators viewed 360◦ videos of two 3D assets side-by-
side and selected the preferred asset based on appearance
and alignment with the corresponding generation prompt.

This preference data was incorporated into the
Gen3DEval training dataset, enhancing the model’s align-
ment with human aesthetics and text fidelity expectations.
We conducted an in-depth analysis of these annotations to
identify common artifacts in modern text-to-3D generation
methods, including (1) disconnected components, (2) Janus
artifacts, (3) opacity inconsistencies, (4) floating elements,
(5) overly smooth or irregular surfaces, (6) texture seams.
Based on these insights, we replicated these artifacts in the
3D mesh data to scale up our dataset and further improve
Gen3DEval ’s performance. Examples of these artifacts are
illustrated in the appendix.

Synthetic Data: To expand the training dataset, we ap-
plied controlled perturbations using Blender, NeRF, and
Gaussian splatting techniques, simulating common artifacts
and misalignments found in text-to-3D generative outputs.
For 3D meshes, we introduced perturbations such as Lapla-
cian smoothing [19], beveling, random surface extrusions,
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Figure 3. Training Dataset We use single and multi-view RGB and surface normals renderings of a 3D object generated from a prompt.
We take these objects and perturb them to simulate common appearance, surface and text-related artefacts in generative 3D methods.

and texture map alterations like blurring and seam intro-
duction. Additionally, we fitted NeRF and Gaussian splats
to the renderings of the artist-created 3D assets, providing a
broader foundation for synthetic training data.

To further enrich this dataset, we introduced additional
perturbations to the NeRF and Gaussian splatting by man-
ually adding transparency artifacts, floating elements, and
disconnected components, mimicking frequent issues ob-
served in text-to-3D generative methods.

To scale the text fidelity comparison dataset, we used the
multi-view video diffusion model from IM-3D [33] and trel-
lis [58] to generate single and multiple views of 3D objects
with varied captions, focusing on changes to appearance
attributes and composition of the objects. Textual pertur-
bations were created with Llama3.2 [2] by prompting the
model to modify the original captions, introducing subtle
variations. This approach allowed us to generate a large, di-
verse synthetic dataset tailored for text fidelity comparison.
To ensure high relevance and quality, we applied CLIP [42]
to filter out examples with low image-text similarity, result-
ing in a refined synthetic dataset for evaluating text fidelity.
Figure 3 showcases some samples of our SFT dataset.

4.2. Image Encoders

We evaluated 3 image encoders: CLIP [42], DinoV2 [39],
Fit3D [62] and the combinations of CLIP with DinoV2 and
CLIP with Fit3D; reshaping them to match the bigger of the
two and adding the values. For CLIP embeddings, the effec-
tive resolution is 336x336 pixels and for both Dinov2 and
Fit3D, which internally fine-tune the Dinov2 base model to
introduce 3D awareness to image features, the model uses
a ViT [12] backbone of patch size 14, effective resolution
of 224x224 and embedding dimension 768. The results of
these ablation experiments are reported in Table 1.

We observe that Gen3DEval performs equally well on
synthetic surface assessment in all the configurations with
lowest accuracy score of 0.89 in the case of Gen3DEval

w/ Fit3D whereas on user-annotated out-of-domain (OOD)
benchmark, CLIP clearly outperforms the rest. On the
synthetic appearance benchmark, described in Section 5.2,
Gen3DEval w/ Fit3D reports the lowest accuracy of 0.8,
with the rest between .85-.89. On the other hand, on the
human evaluation appearance dataset (in-domain methods)
described in Section 5.1, Gen3DEval w/ CLIP as well as
a combination of Fit3D and CLIP report the best accuracy
score of 0.9, followed by CLIP and DinoV2 (0.86), then
Fit3D (0.81) and finally DinoV2 (0.77). In terms of gen-
eralization with OOD benchmarks, Gen3DEval with CLIP
outperforms the rest by a large margin.

On text fidelity benchmarks, in keeping with our earlier
observation, the performance on OOD text fidelity bench-
mark is much better for Gen3DEval with CLIP (0.86) alone
compared with the rest, with the nearest neighbour in CLIP
and DinoV2 (0.74). Finally, on the synthetic text fidelity
benchmark, Gen3DEval w/ DinoV2 alone underwhelms re-
porting 0.75. While standalone numbers for Fit3D is better,
CLIP reports high scores by itself as well as in conjunction
with Fit3D and DinoV2.

Overall, we noticed that Gen3DEval with CLIP embed-
ding consistently performs well across all evaluation dimen-
sions. As a result of this, Gen3DEval uses CLIP encoder to
extract image embeddings.

4.3. Stage 1: Pre-training

The objective of this training stage is to train the projec-
tion matrix to learn correlations between the image encod-
ing space and the language description space. To train the
projection matrix, we use the renderings of the 141,000 3D
artist-created meshes and their accompanying text prompts.
We sample 40K single view image, 40K two-view images,
40K four-view images, and 10K four-view rendered surface
normal images and their corresponding captions. We also
combine 11.4K of the four-view images mentioned above
and combine them to form an image grid. In the case of



surface normals, we process the captions to remove any as-
pect of appearance mentioned in them which is irrelevant to
rendered normals. All multi-view images are sampled uni-
formly from a 360◦ azimuth with a fixed elevation angle.

The training process involved a batch size of 16, learning
rate of 1e−3, a cosine learning rate scheduler with a warm-
up ratio of 0.03, using the ADAM optimizer. We optimized
the model using maximum likelihood for the next token pre-
diction. Pre-training was conducted on 8 A100 GPUs over
a period of 1 day, encompassing 8K iterations.

4.4. Stage 2: Supervised Fine-tuning
The objective of the supervised fine-tuning (SFT) stage is to
jointly train the instruction-following large language model
(LLM) and the pre-trained projection matrix for the task of
selecting the best 3D object out of two based on text fidelity,
3D appearance and surface quality. For fine-tuning, we uti-
lize the human-annotated data and the synthetically gener-
ated comparison data. The SFT dataset distribution is dis-
played in the appendix.

The fine-tuning process involved a batch size of 4, a
learning rate of 2e−6 for the projector, and a learning rate
of 1e−5 for the vLLM, with a cosine learning rate scheduler
and a warm-up ratio of 0.03, using the ADAM optimizer.
We optimized the model by using maximum likelihood of
next token prediction. This stage was trained on 16 A100
GPUs for 18 hours, for 4K iterations.

5. Experiments
We evaluated the performance of Gen3DEval using three
distinct datasets. Their details are explained in the follow-
ing subsections. We also performed ablation studies to ex-
plore the impact of different image encoders on the perfor-
mance of Gen3DEval. This involved varying the types of
image encoders and delineating their respective contribu-
tions to the overall performance of the model in Section 4.2.

5.1. Human Evaluation Dataset
The purpose of the human evaluation dataset is to assess
the alignment of Gen3DEval with human preference on text
fidelity, appearance and surface quality. We curated this
dataset in the same way as we curated the human prefer-
ence data for the supervised fine-tuning stage of training in
Section 4.1 under Human Annotations. Post curation and
processing, we split the total data by holding out 10% of
the total prompts (404) for the creation of this dataset and
using the rest (90%) for the supervised fine-tuning stage of
training. This dataset has 506 VQA comparison data sam-
ples for a total of 40 prompts, annotated on the basis of
appearance. We also added 3 evaluation datasets, one each
for appearance, surface and text fidelity generated from an-
notating pairwise evaluation and removing any ambiguities
from methods as well as prompts that were not used as part

of the training data. We use these to calculate out-of-domain
(OOD) generalization performance of our Gen3DEval.

5.2. Synthetic Dataset

The second dataset is a synthetic evaluation dataset that in-
cludes objects generated by 3D artists along with their syn-
thetically perturbed counterparts, enabling controlled ex-
perimentation in a low-noise environment. We created and
processed this dataset in the same way as we processed the
synthetic dataset for appearance, surface and textual pertur-
bations detailed in Section 4.1 under Synthetic Data. Given
that the VQA training is so diverse, we further ensured no
overlap with training captions and objects by filtering the
evaluation dataset using a sentence similarity threshold us-
ing sentence transformer embeddings [50]. We also curated
a portion of the synthetic evaluation dataset by applying sur-
face perturbations to artist-drawn meshes and rendering the
surface normals of these pairs of objects. All the filtering
mechanisms were similarly applied to this dataset.

5.3. Benchmark Details

We create a diverse set of 80 prompts, Gen3DEval-Bench,
which considers the diversity of objects, textures, and lev-
els of composition. We determine the size of this bench-
mark with the consideration that text-to-3D generation is a
time- and computation-intensive process, aiming to make
the benchmark easily accessible. It is split between 40 an-
imate (humanoids, animals) objects and 40 inanimate ob-
jects, as well as into 43 single object and 37 composite ob-
ject prompts, i.e., combining multiple objects. The average
number of words per prompt is 12.863. Refer to the supple-
mentary for comparison with other prompt benchmarks.

5.4. Metric Computation

To compute the metric, Gen3DEval compares two methods
at a time using the following procedure. First, it samples
four images from a 360◦ RGB or surface normal video cir-
cling the object, at equal intervals covering a 360◦ view
of the 3D asset per prompt per method for a pair of meth-
ods. For each prompt in Gen3DEval-Bench and each pair of
methods, Gen3DEval is applied to a pair of assets at a time.
It takes 8 input images (4 per object) alongwith the relevant
QA prompt and parses the natural language output using
[2] to determine which 3D asset is better. Subsequently, it
applies the ELO rating system to the parsed outputs and ex-
tracts an overall ranking metric. The generation prompt is
only provided in the case of evaluation on text fidelity and
not for appearance and surface. We treat them as separate
tasks which enables us to compare any two generated as-
sets, irrespective of the generated prompts. It also allows us
to evaluate image-to-3D methods more effectively.
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6. Results

6.1. Gen3DEval and other evaluator methods

We compare Gen3DEval against classical baseline met-
rics such as CLIP as well state-of-the-art vLLMs on eval-
uation datasets described in Section 5.1 and Section 5.2.
We show that the model outperforms all the current meth-
ods on assessing appearance preference by a large margin
on synthetic, user preference and out-of-domain evaluation
data, demonstrating a strong correlation with human pref-
erence in the context of text-to-3D asset generation. In
terms of text fidelity, Gen3DEval outperforms CLIP [42],
which is the most popular metric for text fidelity evaluation.
Gen3DEval also narrowly outperforms ImageReward [59]
and PickScore [26] on the out-of-domain benchmark which
has been curated to remove any ambiguous samples. We
also outperform our baselines of surface comparisons data
using only synthetically perturbed surface normals.

Moreover, Gen3DEval is the first method that unifies
text-to-3D generation metrics by incorporating appearance
as well as text fidelity metrics in a holistic manner as evi-
denced in Table 1. We also provide a qualitative comparison
of Gen3DEval with other methods on a few samples from
the evaluation dataset in Figure 4.

We also report results for ablation studies for choice of
image encoders used for the instruction tuning stage in Ta-
ble 1. We note from the ablations that CLIP embeddings
have a more consistent performance across all dimensions
for the purpose of our metric.

Finally, we note that while user studies or user preference
data is the current gold standard, it can be noisy and uncor-
related. For instance, when it comes to text fidelity com-
parison, sometimes, the preference is influenced by appear-
ance. Moreover, with short or simple generation prompts,
it is difficult to pick one over the other. In case of appear-
ance comparison, sometimes, the background or scale can
influence our choice.

6.2. Generative 3D Methods on Gen3DEval-Bench
Table 2 notes the results of Gen3DEval on Gen3DEval-
Bench for a collection of 10 generative 3D methods,
namely, Trellis [58], AssetGen [47], Fantasia3D [9], Tri-
poSR [51], Magic123 [41], Magic3d [28], Vfusion-3d [15],
Dreamfusion [40], LatentNerf [35] and Flex3D [16]. We
rank them in the order of their performance for appearance,
surface quality and text fidelity. The overall ranking is an
average of the scores of appearance and text fidelity.

6.3. Limitations
Gen3DEval’s assessment of objects with janus can be
slightly erratic. There is room for improvement for out-of-
domain performance for surface evaluation, because of lim-
ited availability of diverse, annotated surface comparison
data. We also note that for image-to-3D generation meth-
ods, the performance of methods are inherently influenced
by a text-to-image generation pipeline. Therefore, compos-
ing a strong and consistent image benchmark would be a
logical next step. While Gen3DEval can be used for the pur-



Appearance Surface T-Fidelity

Human Synthetic OOD Synthetic OOD Synthetic OOD

Classical
Avg. CLIP Score [42] 0.3 0.4 0.17 0.3 0.45 0.78 0.8
Avg. Image Reward Score [59] 0.73 0.6 0.66 0.7 0.54 0.65 0.85
Avg. PickScore [26] 0.37 0.25 0.34 0.26 0.21 0.81 0.85

Vision Large Language models
Phi-3.5-Vision [1] 0.53 0.47 0.54 0.49 0.5 0.64 0.65
LLaVA-Qwen-7B [29] 0.54 0.46 0.54 0.51 0.46 0.68 0.58
LLaVA-Llama3-8b [29] 0.5 0.5 0.47 0.47 0.48 0.49 0.5
Llama3.2-Vision-11B* [2] 0.06 0.04 0.05 0.1 0.07 0.04 0.5
BLIP* [27] 0.05 0.28 0.2 0.07 0.09 0.37 0.13
GPT-4o* [38] 0.59 0.48 0.69 0.54 0.54 0.61 0.55
PaliGemma* [7] 0.02 0.02 0.21 0.25 0.25 0.17 0.1

Gen3DEval (CLIP) 0.9 0.85 0.89 0.99 0.67 0.98 0.86
Gen3DEval (CLIP + Fit3D) 0.9 0.88 0.78 0.97 0.57 1 0.53
Gen3DEval (CLIP + DinoV2) 0.86 0.89 0.78 0.99 0.51 0.98 0.74
w/ Fit3D 0.81 0.8 0.55 0.89 0.44 0.93 0.44
w/ DinoV2 0.77 0.87 0.54 0.97 0.61 0.75 0.58

Table 1. We report accuracy for curated synthetic and out-of-domain human preference evaluation datasets for appearance, surface and
fidelity to text. Additionally, for appearance, we compare methods on in-domain (unseen prompts from methods used for training data).
We compare our method against classical metric methods as well as other vLLMs. For text fidelity, we do not provide prompts or pass
empty strings for the classical methods. Methods with * next to their names do not currently support multi-image input and were passed
either 4x2 grids composed of eight images or 8 input images in sequence in case of GPT-4o.

Methods Appear. Surf. T-Fidelity Overall

Trellis* [58] 1 1 1 1
AssetGen [47] 2 7 2 2
Flex3d* [16] 4 N/A 3 3
Latentnerf [35] 3 N/A 6 4
Magic123 [41] 5 4 4 5
Vfusion-3d* [15] 6 8 5 6
Magic3d [28] 7 5 7 7
Dreamfusion [40] 8 2 8 8
Fantasia3D [9] N/A 3 N/A N/A
TripoSR [51] N/A 6 N/A N/A

Table 2. Gen3DEval applied to 3D generation methods on
Gen3DEval-Bench. Methods are ranked ( Best , Worst ) on text
fidelity, appearance and surface quality score (if available). Only
appearance and text fidelity are used for the overall score. Image-
to-3D methods are denoted with *.

pose of evaluating any given pair of generated 3D objects,
for the purpose of being used as a standard evaluation met-
ric, comprehensive application across numerous methods is
relevant to its performance; examples in the appendix.

7. Conclusion

In this paper, we have laid out the lack of an existing metric
in the text-to-3D domain that caters to all its necessary pa-

rameters and established the relevance for developing such a
metric. It is a difficult problem to solve because of the many
ways in which 3D generation is supported. Diverging from
the trend of using similarity metrics, which is impractical
in the case of text-to-3D generation, we propose introduc-
ing 3D aesthetic preference into the vision-language space
and transforming that into a ready-to-use evaluation ranking
metric using vLLMs. We demonstrate that Gen3DEval, a
vLLM containing 8.35 billion parameters and trained using
a synthetically curated 3D-object dataset coupled with user
preference data establishes itself as a comprehensive, acces-
sible and competitive evaluation method displaying strong
performance on relevant metric dimensions, i.e., appear-
ance, texture and text fidelity, in alignment with user 3D
object preference. We hope that Gen3DEval will provide a
standard benchmark and metric for the comparison of exist-
ing and future methods.
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